Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Termodinamica, Entalpia, Entropia, Carnot - Cefetsp, Notas de estudo de Engenharia Mecânica

Termodinamica, Entalpia, Entropia, Carnot - Cefetsp

Tipologia: Notas de estudo

2010

Compartilhado em 11/11/2010

thiago-pochini-8
thiago-pochini-8 🇧🇷

4.7

(24)

32 documentos

1 / 31

Documentos relacionados


Pré-visualização parcial do texto

Baixe Termodinamica, Entalpia, Entropia, Carnot - Cefetsp e outras Notas de estudo em PDF para Engenharia Mecânica, somente na Docsity! 1 Termodinâmica Aplicada TERMODINÂMICA  Disciplina: Termodinâmica  Professor: Caruso Termodinâmica Aplicada APLICAÇÕES I Motores de automóveis Turbinas Bombas e Compressores Usinas Térmicas (nucleares, combustíveis fósseis, biomassa ou qualquer outra fonte térmica) Sistemas de propulsão para aviões e foguetes 2 Termodinâmica Aplicada APLICAÇÕES II Sistemas de combustão Sistemas criogênicos, separação de gases e liquefação Aquecimento, ventilação e ar condicionado Refrigeração (por compressão de vapor, absorção ou adsorção) Bombas de calor Termodinâmica Aplicada APLICAÇÕES III Sistemas de aproveitamento da energia Solar para aquecimento, refrigeração e produção de energia elétrica Sistemas energéticos alternativos – Células de combustível – Dispositivos termoelétricos e termo iônicos – Conversores magneto hidrodinâmicos (MHD) 5 Termodinâmica Aplicada TRANSFERÊNCIA DE CALOR III Radiação – Quando, na ausência de um meio interveniente, existe uma troca líquida de energia (emitida na forma de ondas eletromagnéticas) entre duas superfícies a diferentes temperaturas Termodinâmica Aplicada TERMODINÂMICA - OBJETIVO A Termodinâmica trata da relação entre o calor e as outras formas de energia A energia pode ser transferida através de interações entre o sistema e suas vizinhanças. Estas interações são denominadas calor e trabalho 6 Termodinâmica Aplicada TEMPERATURA I Propriedade difícil de se definir – Inicialmente foi definida a partir da sensibilidade do Homem – Pode-se distinguir que o corpo 1 está mais quente (ou frio) que o corpo 2 e este mais quente que o corpo 3, etc. – A quantificação da diferença somente é possível através de instrumentos (termômetros) Termodinâmica Aplicada TEMPERATURA II  Assim como Massa, Comprimento e Tempo, é difícil dar uma definição de Temperatura em termos de conceitos independentes ou aceitos como primários.  No entanto é possível se chegar a um entendimento objetivo da IGUALDADE de temperaturas usando o fato de que quando a temperatura de um corpo muda, outras propriedades também mudam. 7 Termodinâmica Aplicada TEMPERATURA III  A medida de uma dessas propriedades, como volume, resistência elétrica, pode ser associada a uma dada temperatura. O dispositivo que efetua essa medida é o termômetro.  Se tomarmos dois blocos de cobre, um mais quente que o outro e colocarmos os dois em contato, haverá interação entre eles e o bloco mais quente irá esfriar e o mais frio irá se aquecer. Quando as interações cessarem as quantidades mensuráveis pararão de variar e os blocos estarão em equilíbrio térmico e portanto à mesma temperatura. Termodinâmica Aplicada TEMPERATURA IV Lei Zero da Termodinâmica – Quando dois corpos estão em equilíbrio com um terceiro corpo eles estarão também em equilíbrio entre si. 10 Termodinâmica Aplicada Exercício 1 – Solução  Porque a temperaturas muito baixas os materiais exibem propriedades não observadas a temperaturas usuais. A supercondutividade é um exemplo dessas propriedades  A motivação desse tipo de pesquisa está no fato de se poder encontrar novos fenômenos nas propriedades físicas dos materiais – A tentativa de se reduzir os limites físicos conduz ao desenvolvimento de instrumentos mais sofisticados Termodinâmica Aplicada – Um termopar é formado por dois metais diferentes, conectados em dois pontos, de modo que uma pequena tensão é produzida quando as duas juntas estão em temperaturas diferentes. – Num termopar de ferro-constantan, com uma junção mantida a 0 oC, a tensão varia linearmente de 0 a 28 mV à medida que a outra temperatura varia entre 0 e 510 OC. Determinar a temperatura da junta variável quando a tensão medida for 10,2mV Exercício 2 11 Termodinâmica Aplicada Exercício 2 – Solução – Como a tensão “V” de saída varia linearmente com a temperatura “T”, podemos escrever: – V = a + b  T (1) • (“a” e “b” são constantes) – Os pontos fornecidos permitem determinar as constantes: V = 0 quando T = 0o C; substituindo na (1), vem que a = 0 V = 28 mV quando T = 510 oC portanto b = 0,0549 mV/oC – Para V = 10,2 mV, T = 185,8 oC Termodinâmica Aplicada Exercício 3 A que temperatura os seguintes pares de escalas serão numericamente iguais: – Fahrenheit e Celsius – Fahrenheit e Kelvin – Celsius e Kelvin 12 Termodinâmica Aplicada Exercício 3 – Solução – Fahrenheit e Celsius • TF = 9/5  TC + 32 Como TF = TC TF = 9/5  TF + 32 ou TF = - 40 – Fahrenheit e Kelvin T = 9/5 (T – 273,15) + 32 T = 574,5875 – Celsius e Kelvin • Como as duas escalas se relacionam linearmente conforme a lei TC = T – 273,15, não há temperatura em que as leituras sejam numericamente iguais Termodinâmica Aplicada **** 15 Termodinâmica Aplicada Definições  Processo – é o caminho definido pela sucessão de estados através do quais a substância passa ao sair de um estado inicial e chegar a um estado final. – Quando muda uma ou mais propriedade de uma substância, dizemos que ocorreu uma mudança de estado.  CICLO – Um sistema executa um ciclo quando sai de um determinado estado inicial, passa por diversos outros estados ou processos e finalmente retorna ao estado inicial. – OBS: Uma propriedade de uma substância tem valor único em cada estado que se encontra e independe do caminho que percorreu até se encontrar naquele estado 12 2 1 VVdV  12 2 1 HHdH  12 2 1 VVdV  12 2 1 SSdS  Termodinâmica Aplicada Definições  Trabalho – Força produzindo o deslocamento de um corpo, sendo que o deslocamento acontece da direção da força       2 1 21 2 1 21 2 1 21 dVpWAdXdV AdXpWApF FdXW 16 Termodinâmica Aplicada Definições Energia interna (U) – É a soma de todas as formas de energia microscópicas tais como energia cinética e potencial das moléculas que compõe um sistema – U = m  u – Onde: m  massa u  energia interna por unidade de massa Termodinâmica Aplicada Definições  Entalpia (H) – Ao analisar certos processos termodinâmicos, freqüentemente encontramos a combinação da propriedade Energia Interna (U) com o produto (PV) que também é uma propriedade energética da substância – Esta combinação de propriedades foi denominada de Entalpia • H ≅ U + PV • h ≅ u + Pv • H = m  h 17 Termodinâmica Aplicada ENTROPIA (S) – É a medida do grau de desordem das moléculas de uma substância – O grau de desordem está relacionado com os movimentos de translação, rotação e vibração dos átomos e moléculas das substâncias Conseqüência – Sgás > Slíquido > Ssólido Definições Termodinâmica Aplicada Definições  Título (x) – Propriedade termodinâmica intensiva definida pela razão entre a massa de vapor pela massa de mistura vapor- líquido quando uma substância está em estado de saturação – Líquido saturado: x = 0 – Vapor saturado: x = 1 v T v L v v LV V T V mm m m m x   20 Termodinâmica Aplicada Exercício 6 Determinar: temperatura de saturação, volume específico, entalpia, energia interna e a entropia do vapor saturado a 3,75 bar, tendo-se um título de 100% Termodinâmica Aplicada – Note-se que a tabela não traz os valores procurados (3,75 bar), daí a necessidade de se interpolar os valores: 3,5 138,9 0,5243 2732,4 2546,9 6,9405 4 143,6 0,4625 2738,6 2553,6 6,8959 A interpolação é conseguida considerando-se (f0 e f1 são os valores tabulados consecutivos): x0 f0 x fp x1 f1 Exercício 6 – Solução I       10 01 0 1 fppff xx xx p p      :setem :fazendo 21 Termodinâmica Aplicada Determinação da temperatura de saturação: x0 = 3,5 f0 = 138,9 x = 3,75 fp = ? x1 = 4 f1 = 143,6 p = 0,5 fp = 141,7 oC Determinação do valores restantes: vv = 0,4754 m 3/kg hv = 2735,5 kJ/kg uv = 2550,25 kJ/kg sv = 6,9182 kJ/(kg K) Exercício 6 – Solução II Termodinâmica Aplicada 1o Princípio  Princípio da conservação da energia  “A variação da energia interna de um sistema é dada pela diferença entre o calor trocado (Q) com o meio externo e o trabalho () realizado.”  U = Q -  22 Termodinâmica Aplicada Transformação isobárica  Nas expansões gasosas o volume do gás aumenta, ele próprio empurra o êmbolo ou pistão, realizando trabalho positivo.  Nas compressões gasosas o volume do gás diminui, o meio externo empurra o êmbolo ou pistão contra o gás, realizando trabalho negativo. Termodinâmica Aplicada OUTRAS TRANSFORMAÇÕES GASOSAS  Isométrica, isocórica, isovolumétrica –  = p . V = 0 J , pois o volume é constante – Q = U Isotérmica – Lembrando que: U = 3/2 . n . R . T – U = 0 joules , pois a temperatura é constante – Q =  25 Termodinâmica Aplicada Termodinâmica Aplicada Primeiro automóvel Locomobile 1900 motor a vapor de dois cilindros 26 Termodinâmica Aplicada Motor de 4 tempos : A maioria dos automóveis. Termodinâmica Aplicada Motor de 4 tempos : A maioria dos automóveis. 27 Termodinâmica Aplicada Motor de dois tempos Termodinâmica Aplicada No início do século XlX , Sandi Carnot preocupava-se com o rendimento das máquinas térmicas, em sua obra “Reflexões sobre a força motriz do fogo” afirmava que o rendimento de uma máquina térmica era função única das temperaturas das fontes frias e quente. O ciclo para a obtenção do máximo rendimento de uma máquina térmica proposto por Carnot, é constituído de duas transformações isotérmicas, intercaladas com duas transformações adiabáticas. Ciclo de Carnot 30 Termodinâmica Aplicada  Em 1860, Clausius criou o conceito de entropia ( palavra de origem grega que significa “mudança de forma” ) visando caracterizar essa tendência natural de evolução do Universo.  O fato de a entropia do Universo aumentar continuamente, leva alguns autores a sugerir que o Universo caminha para uma espécie de morte pelo calor, um estado de entropia máxima quando toda energia existente não seria utilizável, pois estaria sob a forma de energia de agitação molecular (energia térmica). Degradação da energia - entropia Termodinâmica Aplicada  Exemplo de Entropia: – Quando conduzimos um automóvel a energia armazenada na gasolina é convertida em calor por combustão e, depois, em energia mecânica, no motor. A energia mecânica, ordenada, assim produzida, dá origem ao movimento controlado e ordenado do carro. – Parte dessa energia foi irrevogavelmente dissipada sob a forma de calor, na estrada, como resultado do atrito dos pneus, no aquecimento do ar por meio da exaustão de gases e para vencer a resistência do vento, e jamais será aproveitada. Degradação da energia - entropia 31 Termodinâmica Aplicada Tabelas: vapor d’água (sist. Inglês) Temperatura Pressão t pa vL x10 3 vLV νV hL hLV hV uL uV sL sV Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Vapor saturado Líquido saturado Vapor saturado 32,018 0,08866 16,022 3301,984 3302 0,01 1075,4 1075,4 0,00 1021,2 0,00000 2,1869 40 0,12166 16,020 2444,984 2445 8,02 1070,9 1078,9 8,02 1023,9 0,01617 2,1592 60 0,2563 16,035 1206,884 1206,9 28,08 1059,6 1087,7 28,08 1030,4 0,05555 2,0943 80 0,5073 16,073 632,784 632,8 48,09 1048,3 1096,4 48,08 1037,0 0,09332 2,0356 100 0,9503 16,130 349,984 350 68,05 1037,0 1105,0 68,04 1043,5 0,12963 1,9822 psia°F ft3/lbm BTU/lbm BTU/lbm BTU/(lb x R) Volume específico Entalpia Energia interna Entropia Pressão Temperatura pa t vL x10 3 vLV νV hL hLV hV uL uV sL sV Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Vapor saturado Líquido saturado Vapor saturado 1 101,70 16,136 333,584 333,60 69,7 1036,0 1105,8 69,7 1044,0 0,13266 1,9779 5 162,21 16,407 73,514 73,53 130,2 1000,9 1131,0 130,2 1063,0 0,23486 1,8441 10 193,19 16,590 38,403 38,42 161,2 982,1 1143,3 161,2 1072,2 0,28358 1,7877 14,696 211,99 16,715 26,783 26,80 180,2 970,4 1150,5 180,1 1077,6 0,31212 1,7567 20 227,96 16,830 20,073 20,09 196,3 960,1 1156,4 196,2 1082,0 0,33580 1,7320 psia °F Volume específico Energia internaEntalpia Entropia BTU/(lb x R)BTU/lbmft3/lbm BTU/lbm Termodinâmica Aplicada Tabela: vapor d’água (SI) Pressão Temperatura pa t vL x10 3 vLV νV hL hLV hV uL uV sL sV Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Líquido & vapor Vapor saturado Líquido saturado Vapor saturado Líquido saturado Vapor saturado 2,5 127,4 1,0672 0,7176 0,7187 535,37 2181,5 2716,9 535,1 2537,2 1,6072 7,0527 3 133,6 1,0732 0,6047 0,6058 561,47 2163,8 2725,3 561,15 2543,6 1,6718 6,9919 3,5 138,9 1,0786 0,5232 0,5243 584,33 2148,1 2732,4 583,95 2546,9 1,7275 6,9405 4 143,6 1,0836 0,4614 0,4625 604,74 2133,8 2738,6 604,31 2553,6 1,7766 6,8959 4,5 147,9 1,0882 0,4129 0,4140 623,25 2120,7 2743,9 622,25 2557,6 1,8207 6,8565 Volume específico Entalpia Energia interna Entropia bar,abs o C kJ/kg kJ/kg x Km3 /kg kJ/kg
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved